Question				Marking details	Marks Available
1.	(a) (b)	(i) (ii) (i) (ii)	(I) (II) (III) (IV)	[A quantity with] magnitude / size and direction. Any suitable quantity (e.g force) other than velocity or acceleration. $u t$ shown to have units: $\mathrm{m} \mathrm{s}^{-1} \mathrm{x} \mathrm{s} \rightarrow[\mathrm{m}]$ (1) $(1 / 2) a t^{2}$ shown to have units: $\mathrm{ms}^{-2} \mathrm{x} \mathrm{s}^{2} \rightarrow[\mathrm{~m}]$ (1) Comment: all terms have same units or equivalent e.g. LHS=RHS (1) $u=8 \mathrm{~m} \mathrm{~s}^{-1}$ UNIT MARK $1 / 2 a=3$ $a=6\left[\mathrm{~ms}^{-2}\right]$ Substitution and answer $x=115[\mathrm{~m}]$ Equation (1) Substitution (1) ecf for u, a and x $v=38\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ Question 1 total	[1] [1] [3] [1] [1] [1] [3] [11]
2.	(a) (b)	(i) (ii) (i) (ii) (iii) (iv) (v) (vi)		[electric] current $I=6[\mathrm{~A}]$ Parallel combinations calculated: 4Ω (1); 2Ω (1) Series addition: $6[\Omega]$ (1) [ecf] $\begin{array}{lll} \mathrm{XY} \rightarrow 2 / 3 \times 12=8[\mathrm{~V}](1) & \text { or } & I=12 / 6=[2 \mathrm{~A}] \quad(1) \tag{1}\\ \mathrm{YZ} \rightarrow 1 / 3 \times 12=4[\mathrm{~V}](1) & & V_{\mathrm{xy}}=8[\mathrm{~V}] \text { and } V_{\mathrm{yz}}=4[\mathrm{~V}] \end{array}$ ecf No Change (1) Correct explanation in terms of: Either: Ratio of resistances stays the same $\}$ (1) ecf Or: New current calculated ($11 / 3 \mathrm{~A}$) and used ζ $R=12 / 1.5=8[\Omega]$ (1) S_{1} open and S_{2} closed (1) $\begin{array}{lll} P=(12)^{2} / 9 & \text { or } \quad P=11 / 3 \times 12 & \text { or } P=(11 / 3)^{2} \times 9 \\ P=16[\mathrm{~W}](1) & & \end{array}$ Strategy - various switch settings and corresponding powers calculated e.g $\left.\begin{array}{cc} \text { Close } \mathrm{S}_{1}: R=7 \Omega & \text { or Close } \mathrm{S}_{2}: R=8 \Omega \tag{1}\\ P=20.6 \mathrm{~W} & P=18 \mathrm{~W} \end{array}\right\}$ Close both: $R=6[\Omega]$ (1) and $P=24[\mathrm{~W}]$ (1) e.g. $P=V^{2} / R(1)$ largest P when R smallest or smallest R identified as $6[\Omega]$ [must be linked to $\left.P=V^{2} / R\right]$ (1) S_{1} and S_{2} closed (1) e.g. $P=I^{2} R(1)$ largest P when I greatest when R smallest [must be linked to $\left.P=I^{2} R\right]$ (1) S_{1} and S_{2} closed (1) (N.B. $P=I V$ could be used here) In both of the above the $3^{\text {rd }}$ mark can be awarded as a standalone mark provided some sensible reasoning is given. Question 2 total	[1] [1] [3] [2] [2] [2] [2] [3] [16]

Question			Marking details	Marks Available
3.	(a) (b) (c) (d)	$\begin{gathered} \text { (i) } \\ \text { (ii) } \end{gathered}$	[Electrical] energy [or work done] transferred to whole of circuit [or through cell] (1) per coulomb [or unit charge] (1) Sensible scale and axes labelled with units (1) All points correct $\pm 1 / 2$ small square division (1) Line of best fit (1) (no requirement $\rightarrow y$ axis) $E=1.48[\mathrm{~V}](\pm 0.01 \mathrm{~V}) \text { ecf from graph }$ Gradient attempted or $r=\frac{E-V}{I}$ (by implication) (1) $r=0.83[\Omega]$ (1) ecf from graph $\begin{align*} & \left.I=\frac{E}{R+r}\left\{\frac{1.48}{6+0.83}\right\} \text { (1) (ecf on } E \text { and } r\right) \quad I=0.22 \mathrm{~A} \tag{1}\\ & t=20 \times 60[1200 \mathrm{~s}](1) \\ & Q=0.22(\text { ecf) } \times 1200(\text { ecf })=264[\mathrm{C}] \quad \text { (1) } \end{align*}$ Question 3 Total	[2] [3] [1] [2] [4] [12]
4.	(a) (b)	(i) (ii) (iii)	Ruler and wire (1) Moving pointer (or crocodile clip shown) (1) Ohmmeter connected correctly with no power supply or voltmeter and ammeter positioned correctly with power supply (1) Straight line through origin Gradient $=R / l$ or pair of R and l values from graph (1) Measure diameter to calculate area (1) $\rho=\operatorname{grad} \mathrm{x}$ area or substitution into $\rho=R A / l$ $\mathrm{Vol}=A l=1 / 3 A \times 3 l($ CSA reduced to $1 / 3$ original) (1) $\begin{equation*} R=\frac{\rho 3 l}{\mathrm{~A} / 3} \tag{1} \end{equation*}$ $\rho=$ constant stated (or implied) (1) OR: $A=\mathrm{vol} / l$ so $R=\rho l^{2} / \mathrm{vol}(1)$ $R \propto l^{2}$ (1) New $R \alpha(3 l)^{2}$ so new $R=9 R(1)$ Question 4 Total	[3] [1] [3] [3] [10]

Question			Marking details	Marks Available
5.	(a) (b) (c)	(i) (ii) (i) (ii) (iii)	Energy cannot be created or destroyed, only converted to other forms. $1 / 2 m v^{2}=m g h$ shown or use of $v^{2}=u^{2}+2 a x$ (1) (no mark for $E_{k}=E_{p}$ only) Clear manipulation (1) $v=48.5\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ Air resistance /drag (1) Friction between bobsleigh and ice or surface or track or on surface /ice/snow (1) Actual $v=[48.5-20 \% \times 48.5]=38.8 \mathrm{~m} \mathrm{~s}^{-1} \quad$ (1) (ecf) Actual $E_{k}=210762[\mathrm{~J}] \quad$ (1) Either [$\left.1 / 2 \times 280 \times(48.5)^{2}-210762\right]$ or [280 x 9.8×120 - 210762] (ecf on 48.5 or 210762) (1) Work done against resistive forces $=118500 \mathrm{~J}$ (1) $=F \times 1400$ (1) ecf $F=85[\mathrm{~N}]$ (1) ecf for use of 1.4 km Question 5 Total	[1] [2] [1] [2] [2] [4] [12]
6.	(a) (b) (c) (d)	(i) (ii)	$\cos 40^{\circ}(1) ; 600 \cos 40^{\circ}=460[\mathrm{~N}] \quad$ (1) 386 [N] no ecf if sin or cos mixed up (90 x 9.8) - 386 (1) (ecf) N.B. if 10 used -1 mark) $\begin{equation*} =496[\mathrm{~N}] \tag{1} \end{equation*}$ $0.8 \times 496=397 \mathrm{~N}$ (1) ecf $\Sigma F_{\text {horizontal }}=(460-397)=63 \mathrm{~N}$ (1) (ecf) $a=0.7 \mathrm{~m} \mathrm{~s}^{-2}$ (1) UNIT MARK gravitational pull of tree trunk on earth Question 6 Total	[2] [1] [2] [3] [1] [9]

