GCE Physics - PH1

Question				Marking details	Marks Available
1.	(a)	(i) (ii)		[A quantity with] magnitude / size <u>and</u> direction. Any suitable quantity (e.g force) other than velocity or acceleration.	[1] [1]
	(b)	(i)		ut shown to have units: $m s^{-1} x s \rightarrow [m]$ (1) (½) at^2 shown to have units: $m s^{-2} x s^2 \rightarrow [m]$ (1) Comment: all terms have same units or equivalent e.g. LHS=RHS (1)	[3]
		(ii)	(I)	$u = 8 \mathrm{m s^{-1}}$ UNIT MARK	[1]
			(II)	$\frac{1}{2}a = 3$ $a = 6 \text{ [m s}^{-2}\text{]}$	[1]
			(III)	Substitution and answer $x = 115[m]$	[1]
			(IV)	Equation (1) Substitution (1) ecf for u , a and x v = 38 [m s-1] (1)	[3]
				Question 1 total	[11]
2.	(a)	(i) (ii)		[electric] current $I = 6[A]$	[1] [1]
	(b)	(i)		Parallel combinations calculated: 4Ω (1); 2Ω (1) Series addition: $6[\Omega]$ (1) [ecf]	[3]
		(ii)		$XY \rightarrow \frac{2}{3} \times 12 = 8 [V]$ (1) or $I = 12/6 = [2 A]$ (1) $YZ \rightarrow \frac{1}{3} \times 12 = 4 [V]$ (1) $V_{xy} = 8 [V]$ and $V_{yz} = 4 [V]$ (1) ecf	[2]
		(iii)		No Change (1) Correct explanation in terms of: Either: Ratio of <u>resistances</u> stays the same Or: New current calculated (1½ A) and used (1) ecf	[2]
		(iv)		$R = 12/1.5 = 8[\Omega]$ (1)	[2]
		(v)		S ₁ open <u>and</u> S ₂ closed (1) $P = (12)^2/9$ or $P = 1\frac{1}{3} \times 12$ or $P = (1\frac{1}{3})^2 \times 9$ (1) P = 16 [W] (1)	[2]
		(vi)		Strategy - various switch settings and corresponding powers calculated e.g Close S_1 : $R = 7\Omega$ or Close S_2 : $R = 8\Omega$ (1) $P = 20.6 \mathrm{W}$ $P = 18 \mathrm{W}$ Close both: $R = 6 \mathrm{[\Omega]}$ (1) and $P = 24 \mathrm{[W]}$ (1) e.g. $P = V^2/R$ (1) largest P when R smallest or smallest R identified as $6 \mathrm{[\Omega]}$ [must be linked to $P = V^2/R$] (1) S_1 and S_2 closed (1) e.g. $P = I^2R$ (1) largest P when I greatest when R smallest [must be linked to	[3]
				$P = I^2R$] (1) S ₁ and S ₂ closed (1) (N.B. $P=IV$ could be used here) In both of the above the 3 rd mark can be awarded as a standalone mark provided some sensible reasoning is given.	[16]

Que	Question		Marking details	Marks Available	
3.	(a)		[Electrical] energy [or work done] transferred to whole of circuit [or through cell] (1) per coulomb [or unit charge] (1)	[2]	
	(b)		Sensible scale and axes labelled with units (1) All points correct $\pm \frac{1}{2}$ small square division (1) Line of best fit (1) (no requirement $\rightarrow y$ axis)	[3]	
	(c)	(i)	$E = 1.48 \text{ [V] } (\pm 0.01 \text{ V}) \text{ ecf from graph}$	[1]	
		(ii)	Gradient attempted or $r = \frac{E - V}{I}$ (by implication) (1) $r = 0.83 [\Omega]$ (1) ecf from graph	[2]	
	(d)		$I = \frac{E}{R+r} \left\{ \frac{1.48}{6+0.83} \right\} $ (1) (ecf on <i>E</i> and <i>r</i>) $I = 0.22 \text{A}$ (1) $t = 20 \text{x} 60 [1 200 \text{s}] (1)$ $Q = 0.22 (\text{ecf}) \text{x} 1 200 (\text{ecf}) = 264 [\text{C}] (1)$	[4]	
			Question 3 Total	[12]	
4.	(a)	(i) (ii)	Ruler and wire (1) Moving pointer (or crocodile clip shown) (1) Ohmmeter connected correctly with no power supply or voltmeter and ammeter positioned correctly with power supply (1) Straight line through origin	[3] [1]	
		(iii)	Gradient = R/l or pair of R and l values from graph (1) Measure diameter to calculate area (1) $\rho = \text{grad } x \text{ area or substitution into } \rho = RA/l$ (1)	[3]	
	(b)		Vol = $Al = \frac{1}{3}A \times 3l$ (CSA reduced to $\frac{1}{3}$ original) (1) $R = \frac{\rho 3l}{A/3}$ (1) $\rho = \text{constant stated (or implied) (1)}$ OR: $A = \text{vol}/l \text{ so } R = \rho l^2/\text{vol (1)}$ $R \propto l^2$ (1) New $R \propto (3l)^2$ so new $R = 9R$ (1)	[3]	
			Question 4 Total	[10]	

Que	Question		Marking details	Marks Available	
5.	(a) (b)	(i)	Energy cannot be created or destroyed, only converted to other forms. $\frac{1}{2}mv^2 = mgh$ shown or use of $v^2 = u^2 + 2ax$ (1)	[1]	
	(0)	(1)	(no mark for $E_k = E_p$ only) Clear manipulation (1)	[2]	
		(ii)	$v = 48.5 [\text{m s}^{-1}]$	[1]	
	(c)	(i)	Air resistance /drag (1) Friction between bobsleigh and ice or surface or track or on surface /ice/snow (1)	[2]	
		(ii) (iii)	Actual $v = [48.5 - 20\% \text{ x } 48.5] = 38.8 \text{ m s}^{-1}$ (1) (ecf) Actual $E_k = 210 762 \text{ [J]}$ (1) Either $[\frac{1}{2} \text{ x } 280 \text{ x } (48.5)^2 - 210 762]$ or $[280 \text{ x } 9.8 \text{ x } 120 - 210 762]$	[2]	
			(ecf on 48.5 or 210 762) (1) Work done against resistive forces = 118 500 J (1) = $F \times 1400$ (1) ecf F = 85 [N] (1) ecf for use of 1.4 km	[4]	
			Question 5 Total	[12]	
6.	(a)	(i) (ii)	cos 40° (1); 600 cos 40° = 460 [N] (1) 386 [N] no ecf if sin or cos mixed up	[2] [1]	
	(b)		(90 x 9.8) - 386 (1) (ecf) N.B. if 10 used -1 mark) = 496 [N] (1)	[2]	
	(c)		0.8 x 496 = 397 N (1) ecf $\Sigma F_{\text{horizontal}} = (460 - 397) = 63 \text{ N}$ (1) (ecf) $a = 0.7 \text{ m s}^{-2}$ (1) UNIT MARK	[3]	
	(d)		gravitational pull of tree trunk on earth	[1]	
			Question 6 Total	[9]	

Question			Marking details	Marks Available	
7.	(a)		No net force / all forces acting on the body are balanced / $\sum F=0$	[1]	
	(b)		$wx + F_2x_2$	[1]	
	(c)	(i) (ii)	1.2 [m] and 2.8 [m] – correctly labelled $w \times 0.8 = 90 \times 1.2 + 100 \times 2.8$ (1) (ecf on 1.2 and 2.8) w = 485 [N] (1)	[1] [2]	
		(iii)	R = 675 [N] (ecf on w)	[1]	
		(iv)	Anticlockwise and clockwise moments calculated correctly (even as ecf) (1) Both = 2 160 [N m] or ∑moments about Q shown=0 (1)	[2]	
		(v)	To the left (or towards P) (1) Increased clockwise moment needed to counteract increased anti- clockwise moment or sensible statement related to weight and distance (1)	[2]	
			Question 7 Total	[10]	